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Domain Growth of First-Order Phase Transitions: 
An Exactly Solvable Model 
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We consider a simple exactly solvable model of an order~tisorder transition: 
noninteracting interfaces moving with constant speed in one dimension. We 
obtain a linear increase with time of the average domain size and a weak 
oscillatory behavior of the scattering structure function. 
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1. INTRODUCTION 

Since the pioneering work of Lifshitz and Slyozov, ~1) the dynamics of the 
transitional processes governing phase separation has been investigated 
theoretically ~2) and by using computer simulation. ~3) The order~lisorder 
phase transition of systems quenched into the two phase regions has also 
been investigated by means of several experimental techniques especially in 
binary alloys ~4) and critical fluid mixtures. ~5-v) One of the most challenging 
problems is how the growth rate and the distribution function of the sizes of 
the ordered domains change with time. ~8) Many theoretical investigations are 
concerned with a decay from thermodynamically unstable states, where the 
equilibrium state can be obtained by successive transitions through a 
continuous series of intermediate states without any need of nucleation 
centers. 4 On the contrary, for initial metastable states the ordering is initially 
due to the production and finally to the growth of nuclei of the new phase. 
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In this paper the growth rate of  the ordered domains, for initially 
metastable states, will be investigated using a simplified model similar to the 
one recently proposed by Sekimoto (~~ but which can be solved exactly. 

2. THE M O D E L  

We consider a one-dimensional system with two possible equilibrium 
0 0 phases. At time t = 0 there are N nucleation centers x~, Xz,..., x ~ randomly 

distributed between the two phases. To be definite we assume the following 
Poissonian probability distribution function for the nucleation centers 

1 0 0 0 0 P (xl, x2,..., = (1) 

V u represents the volume in the restricted configurational space given by 0 = 
x~ < x ~ < .-. < x ~ = L  with periodic boundary conditions x~+~ 1 = x~ and L 
is the system size: 

Furthermore, 

f( LN 
VN=f  dx~ f dx~ "'" XOl<XO<...<4, dx~ N! (2) 

1 
W s = -~. (Lno) N e-L"~ (3) 

where 

N 
n o = -~- (4) 

is the average number of  nucleation centers. The critical size of  nucleation 
centers is assumed to be zero. We thus neglect the early stage o f  the 
formation of  these nuclei. 5 As time goes on the size of  each nucleation center 
grows with constant velocity. 

The physical picture corresponding to the model corresponds to 
considering a system in the disordered phase with the Landau free energy 
having three minima at a given temperature: one central stable minimum and 
two symmetric metastable ones. 

Then by a rapid quench, we allow the system to reach the ordered phase 
where the two metastable minima become stable and the previous stable one 

5 The choice of zero critical size is only a matter of convenience. The following considerations 
will not be modified by critical size different from zero. 
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a) b) c) 

Fig. 1. The free energy of the system. (a) Disordered phase. (b) System quenched into the 
order phase. (c) Initial configuration for the present model. 

becomes metastable. In this situation there will be the possibility of having 
nucleation centers of both phases characterized by the two stable minima. 
Then the temperature is suddenly changed so that the activation energy of 
the metastable state becomes much greater than the thermal energy, as it is 
shown in Fig. 1. However, the energy difference between stable and 
metastable minima provides a driving force for maintaining finite speed of 
domain wall motions. 

The initial configuration of the system at t = 0  will be a given 
distribution of domains of zero size (i.e., nucleation centers) whose spatial 
extension grows in time. 

In order to simplify the model, we assume noninteracting interfaces in a 
one-dimensional system. Thus, the profile of each interface can be approx- 
imated by a step function moving in the forward or backward direction with 
constant velocity v. Owing to the possibility of having two stable minima in 
the free energy, there will be two types of domains. Let us call then "up" and 
"down." At a generic time t the one-dimensional ring of length L will be 
decomposed in switched up, switched down, and unswitched domains. When 
two interfaces belonging to switched domains collide there will be the 
possibility of forming a "stationary" wall or a "virtual" wall. The former for 
collision between interfaces belonging to opposite switched domains, and the 
latter for the equally switched ones. Since we neglect domain interaction, the 
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growth will stop once the ring will be completely decomposed in up or down 
domains separated by stationary walls. 

In order to identify the domains we assign a topological charge eg to 
them, where eg = - 1 ,  0, 1 for the switched up, unswitched, and switched 
down j t h  domains, respectively. Let us call xj(t) (gj(t)) the position at time t 
of the forward (backward) moving interface belonging to the j th  switched 
domain. We immediately write down their evolution equations 

= tX ~  t < t j  
0 x~(t) f �89 ~ + xa+ 1), t ~> tj 

~j(t) = } x~ - vt, t < t~_, 
1 0 0 ($(Xj l + X j ) ,  t>/t j_ 1 

where 

(5) 

(6) 

0 
xj+l - x ~ (7) 

t j . -  2v 

0 represents the initial position of the j th  nucleation and xj(0) = ~j(0) = xj 
center (switched domain of zero size). One may also note that xj(ta)= 
@ +  l ( t j )  = , o 0 ~(xj + xj+ 1). 

3. THE STRUCTURE FUNCTION 

A physical quantity of experimental and theoretical importance is the 
spatial correlation function of the order parameter defined by 

S(x, x' ,  t) = <u(x, t) u(x' ,  t) ) (8) 

Its Fourier transform defines the structure function S(k,  t) which is directly 
proportional to the scattered intensity in any scattering experiment; thus, as 
a consequence of the invariance by translation, we obtain 

• \{ ~u(X'ax t) au(x',ex, 0 ) e,k,x_x,, k2s( , , )= L ff dx dx, (9) 

In the above expressions u(x, t) represents the order parameter profile and 
the expectation value is taken with respect to the initial probability 
distribution function of the N nucleation centers (1). 

Since 

~u(x, t) N 

~ j  q[a(x - xj(t)) - fi(x - ga(t))] (10) 
7x  1 
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using (8) and (9) we find 

1 ( ~ e(eikXj(t) eikYi (t)) S(k, t) = ~ J j -- 
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2) (11) 

Thus, because of our choice of the initial random c i sign distribution 
and as a consequence of the spatial homogeneity on the average, we can 
reduce (11) by using 

e j~l~ ~it (12) 

obtaining 

1( leikxj(t) eikY.j(t)[2) S(k, t) = ~ y ' j  

- k2L [1 -cosk(xAt) -xAt) ) ]  (13) 

Equation (13) is easily evaluated using (5), (6), and (1). As a consequence 
of the spatial homogeneity on the average, equation (13) can be rewritten as 

S(k, t) = 2n~ --kS- { 1 -- (cos k(xj( t ) -  2j(t)))} (14) 

(independent of j). We define the unswitched domain size at t = 0 by 

y =xLm-x  (15) 

thus from (5), (6), and (7) we find 

(a) for yj >/y;_ 1 

2vt, t < tj_ 
x j ( t ) -Xj( t )= vt+�89 t j_a<t<t j  (16a) 

l(yj_~ + y:), t>/tj 

(b) for yj 4 yj_m 

2vt, t < tj 
1 xj(t)--~j(t)= v t+~yj ,  t j < t < t j _  1 (16b) 

�89 + Yj), t>t j-1 

As we can see (16a, b) involve only two variables, yj_~ and yj;  thus in 
order to calculate (14), we only need the joint probability distribution 
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function pO(yj_~, Ys) for two consecutive unswitched domains at time t = 0. 
In the thermodynamic limit we introduce the following function: 

f [  f?  dy P2(y,y')cos[kX(y,y',t)] ~'-(k, t) = (cos k(xs(t ) - 2s(t)) ) = dy , o 

(17) 

where 

X(yj_ l , yj, t) = xs(t ) -- 2j(t) (18) 

represents the size of the j th  switched domain in terms of Ys 1 and Ys" Our 
assumption for the Poisson distribution (1) implies 

eO(y, y,) = eO(y) pOl(y, ) (19) 

where 
p~(y) = no e ,oy (20) 

Thus 

~-(x, t) = 2 f o  dy f+ dy' P~Cy) pO(y,) cos[kXCy, y', t)] 
Y 

(21) 

can be evaluated using (16a, b). After lengthy but straightforward algebra we 
obtain 

l - -q:  2q2e-~ l +  ) ( 1 + )  l - q 2  I J - ( k , t ) -  (1 q2.Z + q2.2 2 c o s r q + - - q  sinrq 

- 2 T  

q2eq2)2 {2q sin 2rq -- (1 -- q2) cos 2rq} (22) 
+ ( 1 +  

with the dimensionless quantities 

k 
q = 2n ~ r = 2novt (23) 

Finally (13) becomes 

2n~ [1 - J - ( k ,  t)] S(~, t) = ~ -  

1 ( + ,  ,q2 ) 
q 2 - 2  3 + - 2e -T 2 cos rq 4 - - - q  sin rq 

2no(1 

- e-2T[2q sin 2rq -- (1 - -  q2) COS 2rq] I (24) 
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We immediately verify 

S(k, 0) = 0 (25) 

1 3 + q  2 
S(k, ~ ) =  2n ~ (1 + q2)Z (26) 

4. THE A V E R A G E  D O M A I N  SIZE 

Given the order parameter correlation function S(x, x', t) the average 
square domain size can be defined as 

zZ(t) _ f +-~o dx f ++_~ dx'(x - x')  2 S(x, x', t) 
f +_~ dx f +~ dx' S(x, x', t) (27) 

Because of the space translational invariance we can rewrite (27) by 

z2(t) = -(c~z/~3kZ)s(k, t)S(k' t) ~=0 (28) 

with S(k, t) given by (24). It is more useful to introduce the dimensionless 
average domain size defined by 

which is a universal quantity. By using (28) and (24) we easily obtain 

l(t)= 13 [2 S2(r) ] I 1/2 (30) 
So(r) 

Where 

S0(z) = 3 - 2e-T(2 + r) + e -2" (3i) 

S2(r ) = 1 + re-~(2 + 2r + l r 2 ) -  e-2~(i + 4r + 2r 2) (32) 

In Fig. 2 is shown the log-log plot of the universal quantity l(t) given by 
Eq. (30) as function of the dimensionless "time" r = 2n 0vt. From this figure 
we see that the average domain size grows to reach the steady state value 
with a power law linear in r. Since we are neglecting the interaction among 
stationary walls (i.e., kinks and antikinks) we should expect that for the 
latter times the domain growth quickly stops. Actually, however, weak 
attractive interactions among nearest-neighbor kinks and antikinks lead to 
very slow domain growth afterwards, as shown in Ref. 11. 
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The log-log plot of the dimensionless average domain size l(~) clearly shows that it 
grows linearly in r = 2novt. 

5. D I S C U S S I O N  

Here we have considered a simple one-dimensional model of domain 
growth which can be solved exactly. A possibly interesting feature is the 
oscillatory behavior of S(k, t) arising from the appearance of a finite number 
of domains with the same size at the early times. A numerical study 
indicates, however, that such an oscillation occurs only in r at large q values 
IS(k, t) increases once and then decreases again at large q]. Such an 
oscillation has also been seen in spinodal �9 ~4) decomposition but presumably 
for different reasons. We believe that this exactly solvable model is useful as 
a first step toward the understanding of the notoriously difficult problem of 
the kinetics of first order phase transitions. 
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